Answer Sheet No	
Sig. of Invigilator	

MATHEMATICS HSSC-II

SECTION - A (Marks 20)

Time allowed: 25 Minute	Time	allow	ed: 25	Min	utes
-------------------------	------	-------	--------	-----	------

NOTE:- Section—A is compulsory and comprises pages 1–2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Circl	e the correct option i.	e. A / B / C /	D. Each par	t carries	one mark.		
(i)	The term	was re	ecognized by	y a Germ	an Mathematicia	ın Leibniz	to describe the
	dependence of one	quantity on a	nother.				
	A. Limit			B.	Function		
	C. Domain			D.	Range		
(ii)	$\lim_{x \to \infty} \frac{\tan x}{x} = \underline{\hspace{1cm}}$						
	x-30 A						
				B.	-1		
	C. 1			D.	None of these	9	
(iii)	$y = e^{2x}$ is called a/a	an	func	tion.			
	A. Linear			B.	Quadratic		
	C. Rational			D.	Exponential		
(iv)	The minimum value	of a function	occurs wher	its deriv	ative is		
	 Equal to zer 	0		B.	Greater than a	zero	
	C. Less than ze	ero		D.	Equal to one		
(v)	The slope of the tang	e graph of	f at $(x,$	f(x)) is			
	A. $f'(x)$	В.	f(x)	C.	y	D.	x
(vi)	The derivative of $6x^3$ w.r.t. x^2 is						
	A. $18x^2$				$9x^{2}$	D.	9 <i>x</i>
(vii)	$\frac{d}{dx}(a^{\ell nx}) = \underline{\hspace{1cm}}$						
(VII)	CEA						
	A. $a^{\ell nx}.\ell nx$	В. с	$a^{\ell nx} \cdot \frac{1}{x}$	C.	$\frac{a^{\ell nx}.\ell na}{x}$	D.	None of these
(viii)	$\int \frac{f'(x)}{f(x)} dx = \underline{\qquad}$						
	10 10 10						
	A. $\frac{d}{dx}[\ell nf(x)]$	+c		B.	$\ell n f(x) + c$		
	C. $ \ell n f(x) + x - \ell n f(x) = \ell n f(x) + \ell$			D.	$-\ell n f(x) + c$		
24.72	6. 1.						
(ix)	$\int (\ell nx) \cdot \frac{1}{x} dx = \underline{\qquad}$						
	A. $\frac{(\ell nx)^2}{x} + c$	В. ($(\ln x)^2 + c$	C.	$\frac{\ell nx}{x^2} + c$	D.	None of these
(x)	$\int \cos ec x dx =$						
	A. $\ell n \sec x + \tan x $	$an x \mid +c$		B.	$\ell n \cos ec x +$	$\cot x \mid + \epsilon$	c
	C. $\ln \cos ec x $	- Language			-cosec x.cot		

DO NOT WRITE ANYTHING HERE

	A. 1:2		В.	1:1		
	C. 1:3		D.	2:1		
xii)	If "P" divides t	he line AB in the ratio 3:3, the	n coordinate	es of "P" are		
	A. $\left(\frac{x_1+x_2+x_3}{2}\right)$	$\left(\frac{x_2}{2}, \frac{y_1 + y_2}{2}\right)$	В.	$\left(\frac{x_1+x_2}{3},\frac{y_1+y_2}{3}\right)$		
	C. $\left(\frac{3x_1}{}\right)$	$\left(\frac{+3x_2}{2}, \frac{3y_1 + 3y_2}{2}\right)$	D.	$\left(\frac{x_1+y_1}{2},\frac{x_2+y_2}{2}\right)$		
(xiii)	The slope of a vertical line is					
	A. ∞		B.	1		
	C. 0		D.	2		
xiv)	If slope of \overline{AB}	$\overline{B} = \text{slope of } \overline{BC}$, then points A	A, B, C are			
	A. Non-c	collinear	B.	Coplanar		
		coplanar	D.	Collinear		
xv)	The feasible s	solution which maximizes or m	inimizes the	e objective function is called the		
	A. Feasi	ble solution	B.	Simple solution		
	C. Optim	nal solution	D.	None of these		
xvi)	Radius of a ci	rcle is given by				
	A. $\sqrt{g^2}$	$+f^2+c$	B.	$\sqrt{g^2 + f^2 - c}$		
	C. $\sqrt{g^2}$	$-f^2-c$	D.	$\sqrt{g^2 - f^2 + c}$		
		ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, a > b$ are		ONLY TO A CO. T. C.		
xvii)	Directices of 6	b' a'				
xvii)		<i>b u</i>		$y = \pm \frac{c}{e^2}$		
xvii)		$\pm \frac{c}{e^2}$		$y = \pm \frac{c}{e^2}$ $y = \pm c$		
xvii)	A. $x = \pm 1$ C. $x = \pm 1$	$\pm \frac{c}{e^2}$	B. D.	6		
	A. $x = \pm 1$ C. $x = \pm 1$	$\pm \frac{c}{e^2}$ $\pm c$ abola $(y-2)^2 = 10(x+3)$ is	B. D.	E.		
	A. $x = \pm$ C. $x = \pm$ Vertex of para	$\pm \frac{c}{e^2}$ $\pm c$ abola $(y-2)^2 = 10(x+3)$ is	B. D.	$y = \pm c$		
	A. $x = \pm 0$ C. $x = \pm 0$ Vertex of para A. $(0,0)$ C. $(2,-1)$	$\pm \frac{c}{e^2}$ $\pm c$ abola $(y-2)^2 = 10(x+3)$ is	B. D.	$y = \pm c$ $(-2,3)$		
xviii)	A. $x = \pm \frac{1}{2}$ C. $x = \pm \frac{1}{2}$ Vertex of para A. $(0,0)$ C. $(2,-1)$ If $\underline{a} \times \underline{b} = 0$ as	$\pm \frac{c}{e^2}$ $\pm c$ $abola (y-2)^2 = 10(x+3) \text{ is } 3$	B. D.	$y = \pm c$ $(-2,3)$		
xviii)	A. $x = \pm \frac{1}{2}$ C. $x = \pm \frac{1}{2}$ Vertex of para A. $(0,0)$ C. $(2,-1)$ If $\underline{a} \times \underline{b} = 0$ and A. \underline{a} and	$\frac{c}{e^2}$ $\frac{c}{e^2}$ $\frac{c}{abola} (y-2)^2 = 10(x+3) \text{ is } \frac{1}{2}$ $\frac{d}{d} = \frac{1}{2} = 0, \text{ then } \frac{1}{2} = 0$	B. D. D.	$y = \pm c$ $(-2,3)$ $(3,-2)$		
xviii)	A. $x = \pm \frac{1}{2}$ C. $x = \pm \frac{1}{2}$ Vertex of para A. $(0,0)$ C. $(2,-\frac{1}{2})$ If $\underline{a} \times \underline{b} = 0$ and A. \underline{a} and C. $\underline{a} \neq 0$	$\frac{c}{e^2}$ abola $(y-2)^2 = 10(x+3)$ is $\frac{d}{d} = 0, \text{ then}$ $\frac{d}{d} = \frac{b}{d} = 0 \text{ are parallel}$	B. D. B. B.	$y = \pm c$ $(-2,3)$ $(3,-2)$ $\underline{a} \text{ and } \underline{b} \text{ are perpendicular}$		
xviii) (xix)	A. $x = \pm \frac{1}{2}$ C. $x = \pm \frac{1}{2}$ Vertex of para A. $(0,0)$ C. $(2,-\frac{1}{2})$ If $\underline{a} \times \underline{b} = 0$ and A. \underline{a} and C. $\underline{a} \neq 0$	$\frac{c}{e^2}$ abola $(y-2)^2 = 10(x+3)$ is abola $ab = 0$, then ad b are parallel $ab \neq 0$	B. D. B. B.	$y = \pm c$ $(-2,3)$ $(3,-2)$ $\underline{a} \text{ and } \underline{b} \text{ are perpendicular}$		

Total Marks: Marks Obtained:

---- 2HA 1211 (L) ----

MATHEMATICS HSSC-II

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Attempt any TEN parts. All parts carry equal marks. Q. 2

 $(10 \times 4 = 40)$

Determine whether the given function "f" is Even or Odd: $f(x) = x^{2/3} + 6$

(ii) Simplify:
$$\lim_{x\to 0}\frac{e^{1/x}-1}{e^{1/x}+1}, x>0$$

(iii) If
$$y = \sqrt{x} - \frac{1}{\sqrt{x}}$$
, prove that $2x \frac{dy}{dx} + y = 2\sqrt{x}$

(iv) Find
$$\frac{dy}{dx}$$
 if $x = y$. $\sin y$

- Find the extreme values for $f(x) = 5 + 3x x^3$ (V)
- $\int \sin^2 x \ dx$ (vi) Evaluate:
- $\int x^3 . \ln x \, dx$ Evaluate: (vii)

(viii) Evaluate:
$$\int_{1}^{\sqrt{5}} \sqrt{(2t-1)^3} dt$$

- Find the equation of a line through (-4, -6) and perpendicular to a line having slope $\frac{-3}{2}$ (ix)
- The vertices of a triangle are A(-2,3), B(-4,1) and C(3,5). Find coordinates of the centroid Find the centre and radius of the circle
- $5x^2 + 5y^2 + 14x + 12y 10 = 0$
- Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally. (xii)
- Find Focus and Vertex of the parabola: (xiii) $(x-1)^2 = 8(y+2)$
 - If $\underline{v} = 3\hat{i} 2\hat{j} + 2\hat{k}$ and $\underline{w} = 5\hat{i} \hat{j} + 3\hat{k}$, then find $|3\underline{v} + \underline{w}|$

SECTION - C (Marks 40)

Note:-Attempt any FIVE questions. All questions carry equal marks. $(5 \times 8 = 40)$

Q. 3 Prove that
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$$

Q. 4 Show that
$$\frac{dy}{dx} = \frac{y}{x}$$
 if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$

Q. 5 Evaluate:
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x (2 + \sin x)} dx$$

- Q. 6 The points (4, -2), (-2,4) and (5,5) are vertices of a triangle. Find In-centre of the triangle.
- Q. 7 Graph the feasible region of the system of linear inequalities and find the corner points: $5x + 7y \le 35$, $x - 2y \le 4$, $x \ge 0$, $y \ge 0$
- Find the centre, foci, eccentricity and directices of the ellipse whose equation is: Q. 8 $25x^2 + 9y^2 = 225$
- Q. 9 Prove by vector method that: $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Answer Sheet No	
Sig. of Invigilator	

20

MATHEMATICS HSSC-II

SECTION - A (Marks 20)

Time allowed: 25 Minutes

NOTE:- Section-A is compulsory and comprises pages 1–2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

. 1 Circ	le the co	rrect option i.e	e. A / B / 6	C / D. Each p	art carries	one mark.		
(i)	Swis	s Mathematicia	nn	invented	a symbolic	way to write th	e statem	ent
	" y is	a function of x	as y=f(x	().				
	A.	Euler	В.	Leibniz	C.	Tailor	D.	Cachy
(ii)	If _f($(x) = e^x$, then f	$^{-1}(x) = $					
	A	e^{x}	В.	sin x	C.	cos x	D.	ℓnx
(iii)	Rang	e of cot x is						
	Α.	(0, ∞)	17 10/20		B.	R		
	C.	(0,∞-)			D.	[-1,1]		
(iv)	$\lim_{n\to\infty}$ ($1 + \frac{4}{n})^n = \underline{\hspace{1cm}}$						
	A.	e e ⁴			В.	e^n		
	C.	e^4			D.	$e^{1/4}$		
(v)	$\frac{d}{dx}$ (3)	3 ^{5x}) =						
		$3^{5x} \ln 3$			B.	5.3 ^{5x}		
	C.	$5.3^{5x} \ln 3$			D.	$3^{5x} \ln e$		
(vi)	If $3x$	+4y+7=0, t	hen $\frac{dy}{dx} =$					
	Α.	$\frac{-3}{7}$ $\frac{-3-7}{4}$			B.	$\frac{-3}{4}$ $\frac{-4}{3}$		
	0	-3 - 7				-4		
					D.	3		
(vii)	$\frac{d}{dx}$ (s	$ in \sqrt{x} $						
		$\cos\sqrt{x}$	B.	$\frac{\cos\sqrt{x}}{\sqrt{x}}$	C.	$\cos\sqrt{x}.2\sqrt{x}$	D.	$\frac{\cos\sqrt{x}}{2\sqrt{x}}$
(viii)		$\frac{1}{2}dx = $						
	A.	$x-2\ell n(x+$	2) + c		B.	ln(x+2)+a	2	
	C.	$2\ell n(x+2) +$	C		D.	$x + 2\ell n(x +$	2)+c	
(ix)		x dx =						
		$\tan x - x + c$			B.	$\tan x + x + c$		
	C.	$2 \tan x \cdot \sec^2$	x+c		D.	sec^2x-1+c		

DO NOT WRITE ANYTHING HERE

	A.	$e^{2x}+c$	B.	$2e^{2x}+c$
	C.	$2xe^{2x}+c$	D.	$\frac{e^{2x}}{2} + c$
(xi)	In ord	lered pair (x, y) "y" is called		2
(^1)	A.	lered pair (x, y) ," y " is called Abscissa	В.	Ordinate
	C.	Domain	D.	Horizontal distance
(xii)		- Intercept form of equation of a str		Horizontal distance
	Α.	y - mx + c = 0	В.	$y - y_1 = m(x - x_1)$
	C.	y = mx + c		
			D.	$\frac{x}{a} + \frac{y}{b} = 1$
(xiii)	Distar	nce from the point P $(6, -1)$ to the	line $6x - 4y$	
	Α.	49	B.	$\sqrt{52}$
	C.	$\frac{49}{\sqrt{52}}$	D.	10
(viv)	la a mini			
(xiv)	A.	alities are expressed by One	symbols. B.	Two
	C.	Four	D.	Three
(xv)	Parar	metric equations of a circle are		
	Α.	$x = a\cos\theta, y = b\sin\theta$	В.	$x = r\cos\theta, y = b\sin\theta$
	C.	$x = a \tan \theta, y = b \sec \theta$	D.	$x = r\cos\theta, y = r\sin\theta$
(xvi)	If radi	ius of a circle is zero, then the circle		n
	Α.	Point circle	B.	Null circle
Fa. 11. 175%	C.	Circum circle	D.	In-circle
(xvii)	Lengt	th of latusrectum of an Ellipse is		
	۸	$2b^2$		
	A.	a	В.	4a
	C.	26		
	Ů.	a	D.	4ax
(xviii)	If vec	tors $\underline{a},\underline{b}$ and \underline{c} are three position	vectors of a tr	riangle, then
	A.	$\underline{a} - \underline{b} - \underline{c} = 0$	B.	$\underline{a} = \underline{b} = \underline{c}$
515151	C.	$\underline{a} = \underline{b} - \underline{c}$	D.	$\underline{a} + \underline{b} + \underline{c} = 0$
(xix)		h of the following triples can be the		
	A.	30°, 45°, 60°	В.	$45^{\circ}, 60^{\circ}, 60^{\circ}$
	C.	45°, 45°, 60°	D,	$60^{\circ}, 60^{\circ}, 60^{\circ}$
(xx)	In cro	ess product, $\underline{u} \times \underline{u} = \underline{}$		
	A.	u^2	В.	2u
	C.	0	D.	None of these
Eor E	omi-	w's use subs		
OI EX	amme	r's use only:		
			Tota	I Marks: 20
			Mark	s Obtained:
		2H	IA 1211 (ON)	

Page 2 of 2 (Math)

MATHEMATICS HSSC-II

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE:- Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

- (i) Prove the identity $sech^2 x = 1 \tanh^2 x$
- (ii) Evaluate $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$
- (iii) Find $\frac{dy}{dx}$ if $4x^2 + 2hyx + by^2 + 2gx + 2fy + c = 0$
- (iv) If $\tan y(1 + \tan x) = 1 \tan x$, show that $\frac{dy}{dx} = -1$
- (v) Find f'(x) if $f(x) = \ln(\sqrt{e^{2x} + e^{-2x}})$
- (vi) Evaluate $\int \cos 3x \cdot \sin 2x \, dx$
- (vii) Evaluate $\int_{-1}^{2} (x+|x|)dx$
- (viii) Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$
- (ix) Find the point three-fifth of the way along the line segment from A(-5,8) to B(5,3).
- Determine the value of "p" such that lines 2x-3y-1=0, 3x-y-5=0 and 3x+py+8=0 meet at a point.
- (xi) Find an equation of the circle with ends of diameter at (-3,2) and (5,-6)
- (xii) Write an equation of parabola if Directrix x = -2 and Focus (2,2)
- (xiii) Find α so that $|\alpha \hat{i} + (\alpha + 1)\hat{j} + 2\hat{k}| = 3$
- (xiv) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$

SECTION - C (Marks 40)

Note:- Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

- Q. 3 For the real valued function f defined below find:
 - a. $f^{-1}(x)$ b. $f^{-1}(-1)$ and verify that $f(f^{-1}(x)) = x$ $f(x) = \frac{2x+1}{x-1}$
- Q. 4 Show that $y = \frac{\ell nx}{x}$ has maximum value at x = e
- Q. 5 Evaluate $\int e^{-x} . \sin 2x \, dx$
- Q. 6 The average entry test score of engineering candidates was 592 in the year 1998, while the score was 564 in 2002. Assuming that the relationship between time and score is linear, find the average score for 2006.
- Q. 7 Maximize f(x, y) = 2x + 5y subject to the constraints $2y x \le 8$; $x y \le 4$; $x \ge 0$; $y \ge 0$
- Q. 8 A cornet has a parabolic orbit with the Earth at the focus. When comet is 150,000 km from the Earth, the line joining the comet and the Earth makes an angle of 30° with the axis of the parabola. How close will the comet come to the Earth?
- Q. 9 If $\underline{a} = 3\hat{i} \hat{j} 4\hat{k}$, $\underline{b} = -2\hat{i} 4\hat{j} 3\hat{k}$ and $\underline{c} = \hat{i} + 2\hat{j} \hat{k}$

Find a unit vector parallel to $3\underline{a} - 2\underline{b} + 4c$