SAMEDIATE AND						
	Roll No.					
T EDWC	Sig. of Cand	idate)		-	
S. I JOLAMAS AD MARGO	-					

Answer Sheet No	
Sig. of Invigilator	· , ,

		CHEMISTRY HS SECTION – A (Marks				
Time	allo	owed: 25 Minutes	<u>> 1/)</u>	(Revised Syllabus)		
NOTE:		Section-A is compulsory. All parts of this section are itself. It should be completed in the first 25 min Superintendent. Deleting/overwriting is not allowed. Do	utes and hand	ed on the question pape ded over to the Centr		
Q. 1	Circ	cle the correct option i.e. A / B / C / D. Each part carries	one mark.			
	(i)	Born – Haber cycle is a special application of: A. Hess's law B. Rate law C.	Boyle's law	D. Henery's law		
	(ii)	Oxidation number of 'Mn' in KMnO_4 is:				
		A. +6 B. +5 C.		D. +7		
	(iii)	` ,	_			
	(iv)			D. 71 grams		
		A. $1.7588 \times 10^{-11} C$ B.	$1.7588 \times 10^{11} C$,		
		C. $1.6 \times 10^{-19} C$ D.	$6.67 \times 10^{34} C$			
	(v)					
		A. Electron B. Neutrino C.		D. Proton		
	(vi)	•				
		A. Triangular pyramidal B.	Octahedral Tetrahedral			
	(vii)	C. Trigonal planar D.) Bond energy is independent of:	retraneurai			
	(viii)	A. Atomic size B. London forces C.	•	D. Bond order		
		A. Oxygen gas (O_2) B.	Carbondioxide g	$gas(CO_2)$		
		C. Chlorine gas (Cl_2) D.	Methane gas (C	CH_A)		
	(ix)	Pressure exerted by a real gas is always less than that a A. Intermolecular forces of attraction B.	• • •			
	(x)	C. Large empty spaces D. Distillation under reduced pressure is called: A. Steam Distillation B.	Destructive Dist			
		C. Fractional Distillation D.	Vacuum Distillat			
	(xi)	Existence of CaCO ₃ in trigonal and orthorhombic forms	is an example of	f:		
	(xii)	A. Isomorphism B. Anisotropy C.) At equilibrium state:	Polymorphism	D. Allotropy		
		 A. Concentration of products becomes zero. B. Concentrations of reactants and products becomes. C. Concentrations of reactants and products becomes. 				
	(xiii)	 D. Concentration of reactants becomes zero. i) If a reaction does not proceed appreciably in forward direction. 	ection it shows:			
	(2411)	A. Zero Kc value B.	Very large Kp va	alue		
		C. Very large Kc value D.	Very small Kc va	alue		
	(xiv		3777	D 77 0		
		A. NF_3 B. BF_3 C.	NH_3	D. H_2O		
	(xv)	 For an endothermic reaction the energy of products is: A. Equal to that of reactants B. C. Higher than that of reactants D. 	Equal to the ener Lower than that	rgy of activation of reaction		
	(xvi	•		or roudianto		
	•	A. 95%NaCl Solution B.	0.95% <i>NaCl</i> S	Solution		
		C. Pure water D.	9.5% <i>NaCl</i> So			
	(xvi					
		A. Cryoscopic constant B.	Ebullioscopic co			
		C. Rate constant D.	Equilibrium cons	siaiii		
	For	r Examiner's use only:		4=		

Total	Marks:
-------	--------

17

Marks Obtained:

CHEMISTRY HSSC-I

(Revised Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Sections B and C comprise pages 1 – 2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly. Periodic table will be provided on demand.

SECTION - B (Marks 42)

Q. 2	Answ	er any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14 x 3 =	42)					
	(i)	How many covalent bonds are present in 34 grams of ammonia (NH ₃) ? [At.masses N=14,H=1]	03					
	(ii)	Using Bohr's equation calculate the distance travelled by an electron of a Hydrogen atom when						
		it jumps from 1st to 2nd orbit.	03					
	(iii)	Write three properties of canal rays.	03					
	(iv)	Describe the shape of following molecules by using VSEPR concept:	03					
		a. PH_3 b. H_2S						
	(v)	Explain sigma bond and Pi bond giving one example in each case.	03					
	(vi)	Hydrogen gas collected at 6 °C and 765 mmHg, occupied $35cm^3$ volume. Calculate the						
		volume of Hydrogen gas at STP.	03					
	(vii)	What is plasma? Give its four properties.	+02					
	(viii)	What is vapour pressure of a liquid? Discuss the effect of temperature and intermolecular forces						
		on the vapour pressure.	03					
	(ix)	Give two definitions of Lattice Energy with an example in each case.	03					
	(x)	Write K_c expression for the following reactions:	03					
		a. $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$						
		b. $P_4(s) + 5O_2(g) \rightleftharpoons P_4O_{10}(s)$						
		c. $CH_4(g) + 4Cl_2(g) \rightleftharpoons CCl_4(l) + 4HCl(g)$						
	(xi)	Define solubility product and write K_{sp} expression for a sparingly soluble salt A_mB_n .	+02					
	(xii)	Calculate pH of a Buffer solution containing 0.1 M acetic acid (CH ₃ COOH) and 1.0 M sodium						
		acetate (CH_3COONa) . The pK _a for acetic acid is 4.76.	03					
	(xiii)	Use the concept of Hydrolysis to explain why aqueous solutions of some salts are acidic,						
		basic or neutral.	03					
	(xiv)	Define the following:	03					
		a. Average rate of reaction						
		b. Instantaneous rate of reaction						
		c. Order of reaction						
	(xiv)	The reaction given below is first order in H_2 and half order in Br_2 :						
		$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$						
		Write rate equation (rate law) of the reaction and deduce overall order of reaction.	03					
	(xvi)	Calculate the mass percent of a solution containing 10 grams of sugar and 100 grams of water.	03					
	(xvii)	Using Raoult's law prove that the Relative Lowering of vapour pressure is equal to the mole						
		fraction of the non-volatile, non-electrolyte solute.	03					

	(xviii)	State and explain Hess's law using a general reaction.	
	(xix)	Balance the following Redox equation by using oxidation number method:	03
		$NaClO_2 + Cl_2 \rightarrow NaCl + ClO_2$	
		and the control of the party with the party of the state	
		SECTION – C (Marks 26)	
Note:	A	Attempt any TWO questions. All questions carry equal marks. (2 x 1	3 = 26)
Q. 3	a.	Draw Molecular orbital diagram of \mathcal{O}_2 and explain its paramagnetic behaviour.	04
	b.	What mass of silver chloride be produced by reacting 120 grams of silver nitrate with 52 gram of sodium chloride.	ns 05
		$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ [At.masses Ag=108, N=14, Na=23, Cl=35.5, O=16]	
	c.	Derive the Ideal Gas Equation and determine the value of ideal Gas Constant (R) using S.I u	nits. 04
Q. 4	a.	State and explain the Law of mass action and derive the equilibrium constant (K_{c}) expression	on
		for a general reaction.	02+03
	b.	In an acid-base titration $25cm^3$ of 0.12M solution of $NaOH$ is neutralized by $30cm^3$ of HC	l
		solution. Calculate the concentration and strength of HCl solution.	04
	c.	Discuss the effect of change in concentration of reactants and the change in surface area of	
		the reactants on the rate of reaction.	02+02
Q. 5	a.	Define molality of a solution and calculate the molality of a solution prepared by mixing 1 gra	m of
		Ethanol (C_2H_5OH) with 100 grams of water. [At.masses C=12, O=16, H=1]	01+03
	b.	Derive an expression to calculate the molar mass of a non-volatile, non-electrolyte solute by	
		the lowering of vapour pressure.	04
	c.	What is standard Enthalpy of atomization? Give an example.	01+01
	ч	Discuss the Construction of standard Hydrogen Electrode using its labelled diagram.	03

—— 1HA 1609 (L) ——

Page 2 of 2 (Chem)

Roll No.					
		-	-	-	

Answer Sheet No.____ Sig. of Invigilator.____

Sig. of Candidate.____

CHEMISTRY HSSC-I

SECTION - A (Marks 17)

Γ	ime	all	ow	ed:	25	Min	utes

(Old Syllabus)

NOTE:	it	tself. It	should be	complete	ed in the fi	rst 25 m	re to be answ inutes and ha	anded d	the question paper over to the Centre
Q. 1	Circl	e the co	rrect option i.	e. A / B /	C / D. Each p	art carries	s one mark.	Y	
	(i)		ate of reaction: May decrea Increases a Decreases	se or incre s the read as the rea	ease as the re tion proceeds ction proceeds the reaction	action prod			
	(ii)	The m	hass of 6.02×10^{-2}	10 ²³ electro	ons is:				
	(iii)	A. Solver A. C.	2.7 mg nt extraction is Law of cons	ervation o		B.	Law of mass		0.55 mg
	(iv)		Amount of ser of molecules		of water is clos	D. e to:	Distribution la	aw	
		A.	$\frac{6.0}{22.4} \times 10^{23}$			В.	55.6 × 6.02 >	< 10 ²³	
		C.	$\frac{18}{22.4} \times 10^{23}$			D.	$\frac{12}{24} \times 10^{23}$		
	(v)	Diamo A. B. C. D.	ond is a bad co It is transpa It has tight s There are n It has high o	rent to ligh tructure o free elec		ystal of dia	amond		
	(vi)		of the following MgCl ₂		ido solid? Glass	C.	NaCl	D.	CaF ₂
	(vii)		um number va $n=2, l=0$	ues for 2P			n=2, l=3	D.	n = 1, l = 0
	(viii)		nich species, B				He^+	D.	$h = 1, t = 0$ Li^{+2}
	(ix)		ding to MOT, th 3 and 4				3 and zero	D.	3 and 2
	(x)		10^{-3} mol dm^{-3} of 1.5				2.7	D.	2.0
((xi)		Hof Human blo 14.00		7.00	C.	8.00	D.	7.35
, ((xii)	18 <i>g</i> o							essure is equal to:
		Α.	6	В.	$\frac{1}{5}$	C.	5.1	D.	1 51
	(xiii)	A. C.	of the following 34.2% solution 18.0% solution	on of sucr on of gluc	ose ose	B. D.	5.85% solution		ri
((xiv)	A. C.	oridge is not us Decreases r Does not ch	apidly ange		B. D.	voltage of cell: Drops to zero Decreases slo		
((xv)	The str A. C.	ronger the oxid EMF of the 0 Reduction Pe	izing reago Cell	ent is, the grea		Oxidation pote Redox Potent	ential	
((xvi)		order reaction Pressure Concentration	, the rate o					ucts

For Examiner's use only:

Maltase

(xvii)

Total Marks:

C.

17

Invertase

D.

Marks Obtained:

Zymase

Which enzyme is used in conversion of sugar into glucose and fructose?

Urease

B.

01+02

CHEMISTRY HSSC-I

(Old Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

Sections B and C comprise pages 1-2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Periodic table will be provided on demand.

		SECTION - B (Marks 42)						
Q. 2	Answe	r any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14						
	(i)	Calculate the number of molecules, positive and negative ions in $10.0\ g$ of H_3PO_4 when diss	sociated					
		in water. $H_3PO_4 \rightarrow 3H^+ + PO_3^{-3}$ (Molar mass of H_3PO_4 is 98 $g \ mol^{-1}$)	03					
	(ii)	Consider the distribution of I_2 between two immiscible layers ${}^{CCl}_4/_{H_2O}$. State Partition law and given	ve					
		expression of distribution coefficient and suggest reason that that I_2 dissolves in presence of K .	1. 01+02					
	(iii)	What is critical temperature of gases? What is its importance in liquefaction of gases? 02+0						
	(iv) A gas has a volume of 255 cm^3 at a temperature of 25° C and under a pressure of 10.0 torrs.							
		weighed 12.1 mg. What s the molecular mass of the gas?	03					
	(v)	Vacuum distillation can be used to avoid decomposition of a sensitive liquid. How will you expla	ain it? 03					
	(vi)	Boiling points of elements of group VII A increase down the group. Explain it in terms of int	ter-					
		molecular forces.	03					
	(vii)	Define Lattice energy. What factors affect it?	1.5+1.5					
	(viii)	Define and explain Heisenberg's uncertainty principle.	01+02					
	(ix)	Define with examples:	1.5+1.5					
	(x)	 (a) (n + l) rule (b) Hund's rule for distribution of electrons in an atom. How will you explain oxygen molecule and its paramagnetic nature on the basis of molecular transfer. 	ılar 03					
	(xi)	orbital theory? Define bond energy. Explain the parameters which determine its strength.	01+02					
	(xii)	How will you differentiate between ΔE and ΔH ? Is it true that ΔH and ΔE have same values	s for the					
	(/////	reactions taking place in solution state?	02+01					
	(xiii)	Define first law of thermodynamics. How does it explain that: (a) $qv = \Delta E$ (b) $qp = \Delta H$	01+02					
	(xiv)	H_2SO_4 is prepared by burning $SO_2 - SO_3$ through reversible exothermic reaction.	01+01+01					
	(xv)	 (a) Write balanced chemical equation. (b) What is the effect of pressure change on this reaction? (c) Reaction is exothermic but it requires a temperature of 400 - 500°C. Why? Define Raoult's Law in three different ways. 	03					
	(xvi)	Aqueous solutions of NH_4Cl , $AlCl_3$ and $CuSO_4$ are acidic in nature. Why?	03					
	(xvii)	Why SHE acts as Anode when connected with Cu but as Cathode when connected with Zu	<i>n</i> ? 03					
	(xviii)	Write reactions taking place during discharging and recharging of Lead accumulator.	03					

Define order of reaction. Write 1st, 2nd and 3rd order reactions.

(xix)

SECTION - C (Marks 26)

Note:		Attemp	t any TWO questions. All questions carry equal marks.	$(2 \times 13 = 26)$				
Q. 3	a.	50 gr	rams each of $NH_4Cl_{(s)}$ and $Ca(OH)_{2(s)}$ react as under:	04				
		$2NH_4$	$_{4}CL_{(s)} + Ca(OH)_{2(s)} \rightarrow CaCl_{2(s)} + 2NH_{3(g)} + 2H_{2}O_{(l)}$					
		Calcu	ulate the mass of NH_3 formed and the amount of non-limiting reactant left behind.					
			1.008, $O = 16$, $N = 14$, $Cl = 35.5$, $Ca = 40$)					
	b.	Desc	ribe the kinetic interpretation of absolute temperature of gases by applying kinetic	gas				
		equa	equation.					
	c.	Deriv	we the equation for radius of n th orbit of hydrogen atom using Bohr's Atomic mode	. 05				
Q. 4	a. Define Atomic orbital Hybridization. How will you explain SP ² Hybridization in Ethene a							
		Hybri	Hybridization in Acetylene? 01+2.5+2.5					
	b.	What are the main points of Planck's Quantum theory?						
	c.	Calculate the heat of formation of Ethyl Alcohol from the following information:						
		(i)	Heat of combustion of Ethyl Alcohol = $-1367 kJ mol^{-1}$					
		(ii)	Heat of formation of $CO_2 = -393.7 kJ mol^{-1}$					
		(iii)	Heat of formation of $H_2O = -285.8 kJ mol^{-1}$					
Q. 5	a.	(i)	What are buffer solutions? Why do we need them?	01+01				
		(ii)	What is Buffer Capacity? Explain with the help of an example.	02				
	b.	Freez	ring points of solutions are depressed when non-volatile solute is present in a solv	ent. Justify				
		it and	plot a graph to elaborate your answer.	03+01				
	c.	Defin	e Galvanic Cell. Draw a labelled diagram and working of the cell using ${\it Zn-Cu}$ ele	ectrodes.				
		Also	write the reactions taking place at the electrodes.	01+03+01				

---- 1HA 1609 ----

Page 2 of 2 (Chem)

CAMEDIATE AND			 	
	Roll No.			
THE STANDARD OF THE STANDARD O	Sig. of Candi	idate		

Answer Sheet No	
Sig. of Invigilator	

					MISTRY TION - A					
e alle	owed	: 25	Vinutes					(Re	evised S	yllabus)
E:	itself	f. It s	should be cor	npleted	in the first	25 mii	e to be answe nutes and har o not use lead p	nded d		
CI	rcle th	e corr	ect option I.e. A	/B/C	/ D. Each part	carries	one mark.	**		
(i)	٧	Vhich o					standard enthal	by of fo		
	A		$H_2O_{(g)}$	B.	C graphite (s)	C.	$CO_{2(g)}$	D.	H_2O_0	<i>l</i>)
(ii)	A	٨.	lay is equal to: 101325 Coulomb		96487 Coulom	bsC.	964 Coulombs	D.	9648 C	Coulombs
(iii)			ole of propane (
	Д		Mass as half a			• • •				
	В	3.	Number of Hyd	rogen at	oms as in one	mole of E	Butane (C_4H_{10}))		
	C) .	Number of carb	on atom	is as in one mo	le of Met	thane (CH_4)			
	D) .	Number of mole	ecules a	s in one mole o	f Ethane	(C_2H_6)			
(iv) V	Vavele	ngth of a photon	is 2×1	$0^{-6}m$. its wave	e numbe	r is:			
(v)	_	∖. Vhich d	$0.5 \times 10^6 m^{-1}$ one of the follow				$0.5 \times 10^5 m^{-1}$	D.	5×10 ⁶	$^{5}m^{-1}$
(- /		۸.	Не	В.	H	C.	He^{+1}	D.	He^{-1}	
(vi			try of PF_5 molec			٠.				
, ,	A	۸. ۵.	Square planar Trigonal planar			B. D.	Trigonal bipyra Trigonal pyran			
(vi	i) Ir	n the fo	ormation of N_{2}^{+}	from N	the electron	is remov	ed from:			
	A	۸.	$\pi 2 p_y$	B.	π^*2p_y	C.	$\sigma^* 2p_x$	D.	$\sigma^2 p_x$	
(vi	ii) 1 A		equal to: 22.414 Pa	В.	101325 Pa	C.	760 Pa	D.	1 Pa	
(ix	-		e speed of gas n			C.	700 Pa	D.	ıra	
` '	Α	۸.	Inversely propo	rtional to	the molecular					
	В	3. D.	Inversely propo				molecular mass	or the g	jas.	
	C) .	Inversely propo	rtional to			olute temperatur	e.		
(x)	_	.iquid c \.	rystals are alwa Isomorphic	ys: B.	Isomeric	C.	Isotropic	D.	Anisoti	ronic
(xi			ine form of grey		ISOMENIC	O .	1301100110	D.		•
	Α	٨.	Tetragonal	B.	Cubic	C.	Monoclinic	D.	Orthor	hombic
(xi	-	∶quillor \.	ium constant (Ko Volume	c) can b	e cnanged by d	nanging: B.	: Pressure			
).).	Temperature			D.	Initial concentr	ations		
(xi	ii) If	fQ > 1	Kc , then to acqu	uire equi	librium state:					
	Α	٦.	System must sh	-		B.	Reaction must			
, ,). 	System must re		nchanged	D.	System must s	shift to I	eft side	
(xi	_		$0.05M H_2SO_4$		1.0	_	7	_	F 0	
(x)		∖. Hvdroa:	2.0 enation of veget	B. able oil	1.0 using nickel cal	C. alvst is a	Zero an example of:	D.	5.0	
(^V)		., ∙g \.	Heterogeneous			В.	Biocatalysis			
,		2.	Homogeneous			D.	Enzyme cataly	/sis		
(xv	VI) E		e-water system Completely mis			B.	Ideal solutions			
).).	Completely imn			D.	Partially miscil		ds	
(x\		Effect o	f pressure on th Graham's law			explained C.	d by: Raoult's law	D.	Boyle's	s law
Fo	r Fyan	niner's	s use only:							_
. 0	AGII		accomy.			Total	Marks:	•	17	

---- 1HA 1609 (ON)***----

Marks Obtained:

03

CHEMISTRY HSSC-I

(Revised Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Sections B and C comprise pages 1 – 2. Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q. 2		er any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14 x 3 and Define the following:	03
	(i)	20 mb 18 mb 28 mb 18	
		a. Avogadro's number b. Limiting reactant	
		c. Stoichiometery	
	(ii)	Write electronic configuration of following elements:	03
	()	a. $_{25}Mn$ b. $_{20}Ca$ c. $_{30}Zn$	
	/iii)		03
	(iii)	What is Hund's rule? Explain with two examples. What is dipole moment? How it is calculated? Give its units.	03
	(iv)	가게 하는 것이 없는 것이 되었다. 그 아이들은 내용이 가득하는 것이 되었다. 그는 그 사람이 되었다. 그는 그 없는 것이 없는 것이 없는 것이 없다.	03
	(v)	Explain the structure of Methane (CH_4) by using Hybridization concept.	
	(vi)	What is an ideal gas? What are causes of deviation of real gases from ideal behaviour?	03
	(vii)	If $50cm^3$ of a gas in a syringe at $15^{\rm o}C$ is heated up to $50^{\rm o}C$. What will be the new volume	
		of the gas if pressure is kept constant.	03
	(viii)	Define the additive, constitutive and colligative properties of liquids giving one example	
		of each property.	03
	(ix)	Give three differences between Molecular solids and Metallic solids.	03
	(x)	Write the relationship between the equilibrium constant Kp with the following equilibrium	
		constants.	03
		a. K_c b. K_n c. K_x	
	(xi)	Using data given below calculate the value of K_c and its units:	03
		$A_{(g)} + 3B_{(g)} \rightleftharpoons 2AB_{(g)}$	
		[A] = 0.399M, $[B] = 1.197M$	
		[AB] = 0.203M	
	(xii)	What are Buffer solutions? How buffer solutions are prepared? Give an application of buffer	
		solutions.	03
	(xiii)	What is chemical Kinetics? Differentiate between average rate and instantaneous rate of	
		a reaction.	03
	(xiv)	Calculate the mass of ozone (O_3) in grams if its concentration in atmosphere is 0.5ppb per Kg	
		of air.	03
	(xv)	Derive a relationship between lowering of vapour pressure of a solvent and the mole fraction of	а

non-volatile, non-electrolyte solute using Raoult's law.

	(xvi)	Define the following:	03					
		a. State function						
		b. Spontaneous process						
		c. Internal energy						
	(xvii)	State and explain the standard Enthalpy of formation.	03					
	(xviii) Balance the following Redox equation by using oxidation number method:							
		$Na + H_2O \rightarrow NaOH + H_2$						
	(xix)	What is Galvanization? How does sacrificial corrosion take place on a damaged Galvanized sheet?	03					
		SECTION – C (Marks 26)						
Note:	A	Attempt any TWO questions. All questions carry equal marks. (2 x 13	= 26					
Q. 3	a.	What is the difference between actual yield and theoretical yield? Calculate the percentage						
		yield of ammonia $(N\!H_3)$ if 42.0 grams of H_2 produces 120.2 grams of ammonia during the						
		following reaction. $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ [at.masses N=14,H=1]	05					
	b.	How did James Chadwick discover neutrons? What nuclear reaction takes place when neutrons						
		are bombarded on nitrogen and copper nuclei separately?	05					
	c.	Write down three drawbacks of valence bond theory (VBT).	03					
Q. 4	a.	Calculate the value of ideal gas constant (R) using S.I units. Calculate the molar mass of an						
		ideal gas at STP. Density of the gas is $1.29 kgm^{-3}$.	06					
	b.	State the Lechatelier's principle and discuss how yield of NH_3 can be increased in the						
		Haber's process.	04					
	c.	Prove that: $pKa + pKb = 14$ at 25 °C for a conjugate acid-base pair.	03					
Q. 5	a.	What is solubility? Discuss the effect of temperature on the solubility of solid solutes.	03					
	b.	Explain construction and working of a Galvanic cell using its labelled diagram. Also write the						
		oxidation reduction reactions taking place at its electrodes.	06					
	c.	What is Electroplating? How is an iron spoon silver plated?	04					

---- 1HA 1609 (ON) ----

Page 2 of 2 (Chem)