STORE AND STORE	Roll No.	
TATAMARKO TO THE TOTAL TO THE TATAMARKO THE TATAMARK	Sig. of Cano	lidate

Answer Sheet No.	
Sig. of Invigilator	

CHEMISTRY HSSC-I

SECTION - A (Marks 17)

Timo	allowed:	25 Minutes
1 11116	411111111111111	

NOTE:	Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the
	question paper itself. It should be completed in the first 25 minutes and handed over to the
	Centre Superintendent, Deleting/overwriting is not allowed. Do not use lead pencil

Q. 1	Circle	cle the correct option i.e. A / B / C / D. Each part carries one mark.					
	(i)	Whic	h of the following has least mass?				
		A.	$1 mol \ of \ O_2$	В.	7 gram of Ag		
		C.	3.01×10^{23} atoms of C	D.	2 gram atoms of N		
	(ii)	The I	Partial pressure of $H_2^{}$ in a flask cor	ntaining 2 gra	ms of H_2 and 16 grams of O_2 is		
		Α.	1 4	В.	$\frac{2}{3}$		
		C.	1 6	D.	1/8		
	(iii)	Boilir	ng point of solution is independent o	f			
		Α.	Nature of solvent	В.	Amount of solution		
		C.	Pressure	D.	Concentration of solution		
	(iv)	n+l			+0=3. The energy order is		
		Α.	A>B	В.	B>A		
		C.	A=B	D.	Can not be predicted		
	(v)	For the	he reaction $N_2 + 3H_2 \iff 2NH_3$	$\Delta H = -92kJ$	mol^{-1} , which of the following gives the greatest		
		yield	of $N\!H_3$?				
		Α.	Adding a catalyst				
		В.	Decreasing the temperature and	pressure			
		C.	Decreasing the temperature and	l increasing th	ne pressure		
		D.	Increasing the temperature and	decreasing th	e pressure		
	(vi)	Joul€	e Thomson expansion of an Ideal ga	s produces_			
		Α.	Heating	B.	Cooling		
		C.	Gas liquefies	D.	No change in temperature		
	(vii)	The f	frequency of X-rays having wavelen	gth of $4A^{\prime\prime}$ (A	ngstrom) is		
		Α	$1.33 \times 10^{18} Hz$	B.	$2 \times 10^{18} IIz$		
		C.	$7.5 \times 10^{17} Hz$	D.	$2.6 \times 10^{10} Hz$		
	(viii)	A sol	ution of glucose is 10% w/v. The vo	lume in which	n one mol of it is dissolved will be		
		А	$1 dm^3$	B.	$1.8 dm^3$		
		С	$10 dm^3$	D.	$18dm^3$		

DO NOT WRITE ANYTHING HERE

(x) (xi)	A. C. For the	Slow Reaction does not take place three half lives of a reaction, the % fra 75% 12.5% he reaction $H_2 + I_2 \rightleftharpoons 2HI$ the value	B. D. action of the B. D.	Fast Endothermic e amount left is 50% 25%
	After A. C. For the	three half lives of a reaction, the % fra 75% 12.5%	action of the B.	e amount left is
	A. C. For the	75% 12.5%	B.	50%
(xi)	C. For the	12.5%		
(xi)	For the		D.	25%
(XI)	to one	The reaction $H_2 + I_2 \rightleftharpoons 2HI$ the value		
		e half of its original volume, the value		
	Α.	48	В.	16
	C.	64	D.	32
(xii)		h of the following solutes will depress is added?	the freezing	g point of water the least, if one mole
	A.	NaCl	B.	$CaCl_2$
	Ç.	$C_6H_{12}O_6$	D.	$AlCl_3$
(xiii)	How	many moles of oxygen atoms are the	re in 0.5 mo	ples of $Ca(ClO_3)_2$?
	A.	3 moles	B.	6 moles
	C.	0.5 moles	D.	1 mole
(xiv)	Which	n metal will dissolve in galvanic cell co	ontaining co	pper and silver electrodes?
	$(Cu^*$	$^{+}/Cu = +0.34V Ag/Ag^{+} = -0.80$	V)	
	A.	Copper	B.	Silver
	C.	Both A and B	D.	None of these
(xv)	What	is the unit cell with crystallographic d	imensions a	$a = b \neq c \text{ and } \alpha = \beta = \gamma = 90^{\circ} ?$
	A.	Cubic	B.	Tetragonal
	C.	Monoclinic	D.	Rhombic
(xvi)	For a	chemical reaction $CH_3COOH \rightleftharpoons C$	CH_3COO^{-}	+ H ⁺
	A.	$\Delta H < zero$	B.	$\Delta H = O$
	C.	$\Delta H > zero$	D.	$\Delta H = Negative$
(xvii)	Durin	g the electrolysis of aqueous solution	of NaCl	using inert electrodes
	A.	$H_{\rm 2}$ liberates at cathode	B.	${\it Cl}_{\it 2}$ liberates at cathode
	C.	$\it Na$ deposits at anode	D.	${\cal O}_{\rm 2}$ evolves at anode
For Ex	amine	r's use only:		
			Tota	l Marks:

----- 1HA 1309 (L) -----

CHEMISTRY HSSC-I

03

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

Sections 'B' and 'C' comprise pages 1–2 and questions therein are to be answered on the separately provided answer book. Answer any fourteen parts from Section 'B' and any two questions from Section 'C'. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q. 2 Attempt any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14 x 3 = 42) (i) A sample of $AlCl_3$ contains 5.4×10^{24} Cl^{-} ions. Calculate: a. Number of Formula units of $AlCl_3$

b.	Number of Al^{-3} ions in the sample	01
C.	Mass of the sample	01
	(Al = 27 ; Cl = 35.5)	

(ii)	a.	The rate of filtration can be increased by using Fluted Filter Paper. Why?	1.5
	b.	During crystallization process, why do some crystals appear coloured? How will the	

		undesirable colours of crystals be removed?	1.5
(iii)	a.	State Avogadro's Law.	01
	b.	Calculate the number of molecules in $1050cm^3$ of CO_2^- at $25^{-6}C$ and 800 mm	

		Hg pressure.	02
(iv)	a.	Define Molar heat of Vaporization and Molar heat of Sublimation.	02
	b.	Explain why heat of sublimation of a substance is greater than heat of vaporization.	01

(v)	Why is it impossible to determine both the position as well as momentum of an electron in
	an atom simultaneously?

(vi)	a.	What is lionization energy? Why is the 1 st I.E <2 nd I.E and so on?	02
	b.	Why does the I.E increase along the period?	01

(vii) For the processes taking place at constant pressure, prove
$$\Delta H = q_P$$
.

(viii) Calculate the value of
$$Kp$$
 for the synthesis of NH_3 according to the equation :

$$N_3 + 3H_2 \rightleftharpoons 2NH_3$$
 $Kc = 6 \times 10^{-2} at 500^{-0} C$

(ix)	a.	Define Molality.	01
	b	What is the Molality of 10% w/w NuCl. solution?	02

$$Zn/Zn^{+2} = +0.76V$$
 ; $Cu^{+2}/Cu = +0.34V$

Calculate emf of the cell. Also write the complete cell equation.

(xi) a	a.	What is the Order of Reaction?	01
--------	----	--------------------------------	----

b.	A study of kinetics of a reaction $A+B \rightarrow Product$, gave the following data:	02

Exp#	[A]	[B]	Initial rate
I	1.00	0.15	4.2×10 6
I	2.00	0.15	8.4×10^{-6}
111	1.00	0.20	5.6×10^{-6}

Calculate the order of reaction.

	(xiii)	b. Balar	Why is the aqueous solution of $NaCl$ neutral and that of NH_4Cl acidic? nee the Redox Equation by Ion Electron method in acidic medium:	02 03
		Cr,C	$D_7^{-2} + Cl^- \to Cr^{+3} + Cl_2$	
	(xiv)	The s	solubility of MgF_2 is $7.6{ imes}10^{-2}~g~dm^{-3}$ at $25~^{0}C$. Calculate its solubility product	
	(· ·)	(Mg=		03
	(xv)	a.	What is Enthalpy?	01
	. ,	b.	Under what conditions $\Delta H = \Delta E$	02
	(xvi)	Give	reasons:	
		a.	The dipole moment of CO_2 and CS_2 is zero , but that of SO_2 is 1.62 D.	1.5
		b.	Pi bonds are more diffused than sigma bonds.	1.5
	(xvii)		ulate the Energy, Frequency and Wavelength of radiations emitted when electron jun=4 to n=2 of hydrogen atom.	ımps
	(xviii)	a.	Why do the boiling points of noble gases increase down the group?	1.5
	, ,	b.	Freshly cut surface of the metal is shiny. Why?	1.5
	(xix)	Verify	Graham's Law of diffusion from kinetic gas equation.	03
			SECTION – C (Marks 26)	
Note:		Atten	npt any TWO questions. All questions carry equal marks.	(2 x 13 = 26)
Q. 3	a.	(i)	Define Stoichiometry. What assumptions are made while performing	
			Stoichiometric calculations?	03
		(ii)	50 g each of NH_4Cl and $Ca(OH)_2$ reacted together according to the equation	1 :
			$2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + CaCl_2 + 2H_2O$. Calculate the mass of NH_3	formed.
			(N = 14 ; Cl = 35.5 ; Ca = 40)	04
	b.	(i)	Using kinetic gas equation $PV = \frac{1}{3} m N \vec{c}^2$, workout an expression which relates	the
			average kinetic energy of the gas molecules to the absolute temperature.	04
		(ii)	Why is the volume of a gas generally expressed in $g dm^{-3}$ rather than $g cm^{-3}$?	02
Q. 4	a.	(i)	Give the main postulates of VSEPR theory.	04
		(ii)	Explain the structure and geometry of BeCl_2 and SnCl_2 on the basis of	
			VSEPR theory.	04
	b.	What	is Atomic Orbital Hybridization? Explain hybridization in Ethene and Water.	05
Q. 5	a.	(i)	What are Buffers? How do the buffers act?	04
		(ii)	What is the pH of a solution containing 7.2 g of sodium benzoate $C_{\!\scriptscriptstyle 6}H_{\scriptscriptstyle 5}COONa$	7
			in one dm^3 of 0.02 M benzoic acid $C_6H_5COOH.(Ka=6.4\times10^{-5})$.	04
	b.	How	does the Arrhenius equation help to determine the energy of activation?	05
			—— 1HA 1309 (L) ———	
			V · r	

01

Define Salt Hydrolysis.

(xii)

a.

CRINEDIALE AND	
Ruano o	Roll No.
HOUCATO,	Sig. of Candid
SLAMABAD	

	1		. !

Sig. of Candidate.

Answer Sheet No.	

Sig. of Invigilator.

CHEMISTRY HSSC-I

SECTION - A (Marks 17)

Time allowed: 25 Minutes

NOTE: Section—A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

0.1	Circle the correct option i.e.	A / B / C / D. Each part carries one mark
W . I	Circle the confect obtion i.e.	A / D / C / D. Each Dail Callies One maik

/i\	The volume occupied by	w a cample of	CO at CTD which	contains 0 ares	~ of avvaor
(i)	THE VOIGINE OCCUPIEG L	y a sample of	COS at STP WHICH	i contains o diai	n or oxyden

IS _____

A. $11.20 \, dm^3$

B. $5.60 \, dm^3$

C. $56.0 \, cm^3$

D. $112 \, cm^3$

(ii) For drying crystals, which drying agent is NOT used in disiccator?

A. $Conc.H_2SO_4$

B. Silica gel

C. $CaCl_2$

D. P_2O_5

(iii) Eight grams each of Oxygen and Neon at $27^{\circ}C$ will have total K.E. in the ratio of

A. 5:8

B. 8:5

C. 3:4

D. 5:4

(iv) The permissible set of four quantum numbers for the electron in 3d orbital of Fe is_____

A. n=3, l=1, m=0, $S=\frac{+1}{2}$

B. $n=3, l=2, m=3, S=\frac{-1}{2}$

C. n = 3, l = 2, m = -1, $S = \frac{-1}{2}$

D. $n=3, l=3, m=-3, S=\frac{+1}{2}$

(v) Which of the following unit cell dimensions describes a trigonal (Rhombohedral) system?

A. a = b = c, $\alpha = \beta = \gamma = 90^{\circ}$

B. $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$

C. a = b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$

D. $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

(vi) The ratio between wave numbers of first line and limiting line in Lyman series is_____

A. 1:2

B. 4:3

C. 20:27

D 3.4

(vii) Which of the following molecules is paramagnetic in nature?

A. Li_2

B. Be_{γ}

C. B,

D. C_2

(viii) The enthalpy of neutralization for $H^*_{(aq)} + OH^-_{(aq)} \to H_2O_{(l)}$ is $-57.4\,kJ\,mol^{-1}$.

What is the enthalpy of neutralization when 0.1 M HCl is mixed with equal volume of 0.1 M NaOH?

A $-57.4 \, kJ \, mol^{-1}$

B. $-0.574 \, kJ \, mol^{-1}$

C. $-5.740 \, kJ \, mol^{-1}$

D. None of these

DO NOT WRITE ANYTHING HERE

(ix)	The r	eaction for the s	ynthesis	s of ammonia is	$N_{2(g)} + 3$	$H_{2(g)} \rightleftharpoons 2NH_{3}$	(g) ·	
	For th	nis reaction						
	A.	$K_c > K_p$			В.	$K_c < K_p$		
	C.	$K_c = K_p$			D.	None of these		
(x)	The r	elative lowering	of vapor	ur pressure of a	solution	containing 30 gra	m Urea	a in
	500g	H_2O is						
	A.	0.0122			В.	0.177		
	C.	0.0250			D.	0.0177		
(xi)	Hydro	olysis of which ic	n-pair g	ives alkaline sol	ution?			
	A.	Cl^-, SO_4^{-2}			В.	HS^{-1}, HCO_3^{-1}	1	
	C.	NO_3^{-1}, ClO_3^{-1}			D.	None of these		
(xii)	The s	standard reduction	on poten	tials of some su	bstances	s are given below:	:	
	E^{o}_{X} .	$_{/X} = -2.87 \ V$	$E^o_{W^*/W}$	$= 0.521 V, E^{\circ}_{2}$	$L_{I/Z}=2.8$	87 $V, E^{o}_{Y^{+}/Y} = -$	-0.76 I	/
	Whic	h of the above e	lements	is the strongest	oxidizing	g agent?		
	A.	X			В.	Υ		
	C.	Z			D.	W		
/s.:::\								
(xiii)	The h	nalf life of $\it HI$ is :	253 sec	at $508^{\circ}C$. If in	itial cond	entration of $H\!I$ is	0.05M	i, then what frac
(XIII)		nalf life of $H\!I$ is a concentration of					s 0.05M	I, then what frac
(XIII)	initial				1012 sed		s 0.05M	I, then what frac
(XIII)							s 0.05M	I, then what frac
(XIII)	initial A.	concentration or $\frac{1}{4}$			1012 sed B.	$\frac{1}{8}$	s 0.05M	I, then what frac
(XIII)	initial A. C.	concentration of $\frac{1}{4}$ $\frac{1}{12}$	f <i>HI</i> is l	eft behind after	1012 sed B. D.	$\frac{1}{8}$ $\frac{1}{16}$	s 0.05M	I, then what frac
	initial A. C.	concentration or $\frac{1}{4}$	f <i>HI</i> is l	eft behind after	1012 sed B. D.	$\frac{1}{8}$ $\frac{1}{16}$	s 0.05M	I, then what frac
(xiii)	initial A. C. dm^3 a A.	concentration of $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals	f <i>HI</i> is l	eft behind after	1012 sec B. D. ual to B.	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals	s 0.05M	I, then what frac
(xiv)	initial A. C. dm³ a A. C.	concentration of $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals	f <i>HI</i> is I	eft behind after . 1 <i>dm³atm</i> is eq	1012 sec B. D. ual to B. D.	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals		I, then what frac
	initial A. C. dm³ a A. C.	concentration of $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals	f <i>HI</i> is I	eft behind after . 1 <i>dm³atm</i> is eq	1012 sec B. D. ual to B. D.	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals		I, then what frac
(xiv)	initial A. C. dm³ a A. C.	concentration of $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals	energy	eft behind after . 1 <i>dm³atm</i> is eq	1012 sec B. D. ual to B. D.	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals		I, then what frac O_2^{\star}
(xiv)	initial A. C. dm³ a A. C. The n A.	concentration of $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals maximum number O_2^{+2}	energy er of unp B.	eft behind after $1dm^3atm \text{ is eq}$ saired electrons is O_2^{-2}	B. D. B. D. s preser	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals	D.	
(xiv)	initial A. C. dm³ a A. C. The n A.	concentration of $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals maximum number O_2^{+2}	energy er of unp B.	eft behind after $1dm^3atm \text{ is eq}$ saired electrons is O_2^{-2}	B. D. B. D. s preser	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals at in	D.	
(xiv)	initial A. C. dm^3 a. C. The n A. K_b fo	concentration of $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals maximum number O_2^{+2} or water is 0.52° 0.52° 0.52° 0.52° 0.52°	energy. For of unp B. $C.m^{-1}$.	eft behind after $1dm^3atm$ is equal to O_2^{-2} The boiling point $101.04^{\circ}C$	B. D. ual to B. D. s preser C. t of 2m 2	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals at in	D.	O_2^{+} 104.16 ^{0}C
(xiv) (xv)	initial A. C. dm^3 a. C. The n. A. K_b for A.	concentration of $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals maximum number O_2^{+2} or water is 0.52° 0.52° 0.52° 0.52° 0.52°	energy. For of unp B. $C.m^{-1}$.	eft behind after $1dm^3atm$ is equal to O_2^{-2} The boiling point $101.04^{\circ}C$	B. D. ual to B. D. s preser C. t of 2m 2	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals at in O_2 41Cl ₃ solution is _ 100.52^0 C	D.	O_2^{+} 104.16 ^{0}C
(xiv) (xv) (xvi)	initial A. C. dm^3 a. A. C. The n. A. K_b for A. In He A.	concentration of $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{12}$ atm is the unit of 22.216 cals 133.3 cals maximum number O_2^{+2} or water is 0.52^{+0} C xagonal close paragraphs.	f HI is I energy. For of unp B. $C.m^{-1}$ B. acking the	eft behind after $1dm^3atm \text{ is eq}$ waired electrons is O_2^{-2} The boiling point $101.04^{0}C$ the coordination is	B. D. B. D. s preser C. c of 2m C. number of	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals at in O_2 $AICI_3$ solution is O_2 of central atom is	D.	O_2^{+} $104.16^{0}C$
(xiv) (xv) (xvi)	initial A. C. dm^3 a. A. C. The n. A. K_b for A. In He A.	concentration of $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{12}$ eatm is the unit of 22.216 cals 133.3 cals maximum number O_2^{+2} or water is 0.52^{+0} O_2^{+2} at water is 0.52^{+0} O_2^{+2} and O_2^{+2} O_2^{+2} are water is O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} are water is O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} O_2^{+2} and O_2^{+2} O_2^{+2} and O_2^{+2} $O_2^$	f HI is I energy. For of unp B. $C.m^{-1}$ B. acking the	eft behind after $1dm^3atm \text{ is eq}$ waired electrons is O_2^{-2} The boiling point $101.04^{0}C$ the coordination is	B. D. ual to B. D. s preser C. c of 2m 2 C. number of	$\frac{1}{8}$ $\frac{1}{16}$ 101.325 cals 382.45 cals at in O_2 $AICI_3$ solution is O_2 of central atom is	D.	O_2^{+} $104.16^{0}C$

____ 1HA 1309 (ON) ----

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

a.

Total Marks Sections B and C: 68

NOTE: Sections 'B

Sections 'B' and 'C' comprise pages 1–2 and questions therein are to be answered on the separately provided answer book. Answer any fourteen parts from Section 'B' and any two questions from Section 'C'. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q. 2 Attempt any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. (14 x 3 = 42)

(i) A sample of MCl_2 contains 63.964% of chlorine. Calculate:

02, 01

- a. Molar mass of M
- b. Mass of 2.45 moles of the sample
- (ii) Consider the distribution of I_2 between two immiscible layers (CCl_4/H_2O) . State Partition law. Give expression of distribution coefficient and suggest reason that I_2 dissolves in water in the presence of KI.

01,01,01

(iii) How does quantitative statement of Charles's law help in the derivation of Absolute Zero?

. . . 03

(iv) a Table given below shows the boiling points of some compounds:

Name	Ethane	Hexane	Isodecane
b.p °C	-88.6°C	68.7°C	327.0°C

Suggest reasons for the difference in their boiling points.

02

b. Define the term Polarizability.

01

(v) Derive expression for the potential energy of bounded electron.

Calculate ΔE for the formation of one mole H_2O at $100^{0}C$.

Concentration of products becomes doubled.

03

(vi) a. In periodic table, the ionization energies increase from left to right but actually it drops from beryllium to boron. Give the reason.

02

01

1.5

b. Calculate the electron affinity for the process $X_{(g)} + 2\,\overline{e} \to X_{(g)}^{-2}$

First electron affinity = $-141 \ kJ \ mol^{-1}$. Second electron affinity = $798 \ kJ \ mol^{-1}$.

(vii) The enthalpy of formation of one mole of gaseous water is $-242.2\,kJ\,mol^{-1}\,at\,100^{0}\,C$.

03

- (viii) Predict the effect of the following on the equilibrium position of $PCl_{5(y)}, \rightleftharpoons PCl_{3(y)} + Cl_{2(y)}$
 - Predict the effect of the following on the equilibrium position of $PCl_{5(g)}$, $\rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
 - b. The volume of the system is reduced to one half . 1.5
- (ix) a. Derive the expression for ionization constant of a base. **02**
 - o. K_b value of aniline is $4.7 \times 10^{-7} \ mol \ dm^{-3}$. Calculate its pK_b value.
- (x) Define Ebullioscopic and Cryoscopic constants. 03
- (xi) Balance the following equation by Ion-electron method: $Cr(OH)_3 + SO_4^{-2} \longrightarrow CrO_4^{-2} + SO_3^{-2} \text{ (basic media)}.$
- (xii) Using standard reduction potentials of $E^{\prime\prime}\,Cr^{3+}$ / Cr=-0.74V , $E^{0}\,Ag^{+}$ / Ag=0.80V
 - a. Calculate emf of the cell. b. Which cell will be positive pole? 01,01
 - c. Give equation for the overall chemical reaction. 01
- (xiii) Justify the statement that collision frequency and orientation of molecules are necessary conditions for determining the proper rate of reaction.

For a general reaction, $A+5B \rightarrow \Pr{oduct}$, the rate law has been found to be: (xiv) $\frac{-d[A]}{dt} = K[A][B]^2$ Define Order of reaction. Justify with reason that $\frac{+d[A]}{dt}$ is negative. 01,01 What would happen to the rate if we double the concentration of A and B? 01 (xv) Sketch the shapes of NCI_3 and BE_3 using VSEPR theory. Explain the origin of differing in shape. 03 (xvi) Explain with reasons that: $\Delta H_{yub} > \Delta H_{van} > \Delta H_{toxion}$ 1.5 Evaporation of a liquid occurs at the surface of the liquid. 1.5 Calculate the ionization energy value in $kJ \, mol^{-1} \, for \, He^+ ion$. Give the units of \in_0 and \overline{v} . (xvii) 03 (xviii) van der Waals constant for some gases is given below: Gas NH, H, O_2 ʻa' 4.170 0.245 1.360 3.590 What is the significance of "a"? Derive its SI units. 02 Which gas has the highest critical temperature? Explain with reasons. 01 (xix)About 99% of the universe consists of plasma. What is Plasma and Metastable state? 03 SECTION - C (Marks 26) Attempt any TWO questions. All questions carry equal marks. $(2 \times 13 = 26)$ Calculate the mass of CI_2 gas evolved when 61.3 grams, 90% by mass of sample of $KMnO_4$ is allowed to react with $275 \, cm^3 \, HCl$ solution (27% by mass with density $1.14 \, g \, cm^{-3}$) $2KMnO_{4(aa)} + 16HCl_{(aa)} \rightarrow 2KCl_{(aa)} + 2MnCl_{(aa)} + 5Cl_{2(a)} + 8H_2O_{(b)}$ 06 b. Describe Kinetic interpretation of absolute temperature by applying kinetic gas equation. 04 Define Azeotropic mixture. Why does HCI/H_2O system exhibit negative deviation? 01,02 c.

- Q. 4 What is Metallic bond? Explain its formation by both Electron gas theory and 01+2.5+2.5 Molecular Orbital theory.
 - VSEPR theory demands that lone pair occupies more space than bond pair. b. Explain with reasons. Also write the limitations of VSEPR theory? 02,02
 - When Cu is immersed in 1M of $CuSO_4$ solution, an equilibrium is set up between the metal c. atoms and ions in the solution. Moreover, the electrode gets positive charge. Explain with reasons.
- Q. 5 Moseley studied X-rays spectrum of various elements.

Note:-

Q. 3

b.

03 What are the conclusions drawn by Moseley from a detailed analysis of the spectra. (i)

03

02

- (ii) What is the origin of X-rays?
- 01,02 What is Lattice energy? Explain the factors affecting Lattice energy. (i)
 - 02 Draw fully labelled Born-Haber cycle for the formation of KBr.
- 02,01 How does catalyst affect the rate of reaction? Also describe by means of graph. C.