GAT Mathematics Syllabus		
Sr. No.	Core Areas	Percentage
1.	Algebra	8%
2.	Basic Mathematics (Class v to vii)	10%
3.	Calculus	8%
4.	Complex Analysis	7%
5.	Computational Mathematics	15%
6.	Differential Equation	15%
7.	Functional Analysis	7%
8.	Geometry	4%
9.	Mathematical Statistics & Probability	7%
10.	Mechanics	4%
11.	Number Theory	4%
12.	Real Analysis	7%
13.	Vectors	4%
	Total	100%

Mathematics (Detailed)		
Sr. No.	Core Areas	Percentage
Sr. No.	ALGEBRA: 1.1 Group Theory	Percentage
	 1.4 Abstract Linear Algebra	

	vector space, bases and dimensions of a vector space, sums and direct sums of subspaces of a finite dimensional vector space, dimension theorem, linear transformation, null space, image space of a linear transformation, matrix of a linear transformation, rank and nullity of a linear transformation, relation between rank, nullity and dimension of domain of a linear transformation, orthogonal transformation, change of	
	basis, inner-product spaces, projection of a vector on another vector, norm of a vector, Cauchy-Schwartz inequality, orthogonal and orthonormal bases, similar matrices and diagonalization of a matrix, Home(V, W), dimension and basis of Home(V, W), dual space and dual basis, annihilators.	
2.	BASIC MATHEMATICS (CLASS V TO VII):2.1 Class V & VI Mathematics5%Sets, types of sets, whole numbers, integers, factorsand multipliers, fractions, decimals, percentages,unitary method, BODMAS rule, ratio and proportion,financial arithmetic, algebraic operations, linearequations, distance, time and temperature, linesegments, construction of angles, construction oftriangles, construction of quadrilaterals, perimeter andarea, average, graphs (block, column, bar and pie).2.1 Class VII & VIII Mathematics5%Basic operations on sets, Venn diagrams, verificationof commutative, associative, distributive and DeMorgan's laws through sets and Venn diagrams,rational numbers, real numbers, number systems withbases 2 and 10 and their conversions, exponents,square root of positive numbers, cubes and cuberoots, HCF and LCM (using division and primefactorization) direct and inverse relations, taxes, profit,loss, discount and markup, compound proportion,income tax, Zakat and Ushr, operations withpolynomials, algebraic identities involving $(x+a)(x-a)$, $(a+b)^2$, $(a-b)^2$ and a^2-b^2 ,factorization of algebraic expressions, simultaneousequations, solution by comparison, substitution,elimination, cross-multiplication and graphicalmethods, properties of angles, congruent and similarfigures, congruent triangles, circumference and areaof a circle, surface area and volume of sphere andcylinder, frequency distribution.	10%

	CALCULUS:	
3.	3.1 Differential Calculus	
	3.2 Integral Calculus2% Integral, definite and indefinite integral, the fundamental theorem of calculus, techniques of integration, area under the curve.	8%
	3.3 Vector Calculus: 3% Vectors and analytic geometry of 2 and 3 dimensional spaces, vector-valued functions and space curves, functions of several variables, limits and continuity, partial derivatives, the chain rule, double and triple integrals with applications, line integrals, the Green's theorem, surface area and surface integrals, the Green, the divergence and the Stokes theorems.	
	COMPLEX ANALYSIS:	
4.	6.1 Complex Numbers2% The algebra and the geometry of complex numbers.	
	6.2 Theorems 2% Cauchy-Riemann equations, harmonic functions, elementary functions, complex exponents, contours and contour integrals, the Cauchy-Goursat Theorem, the Cauchy integral formulae, the Morera Theorem, maximum modulus principle, the Liouville theorem, fundamental theorem of algebra.	7%
	6.3 Series & Integrals3% Convergence of sequences and series, the Taylor series, power series representation of functions, the Laurent series, uniqueness of representation, branch point, zeros of analytic functions, residues and poles, the residue theorem, evaluation of improper integrals involving trigonometric functions, integrals around a branch point, the argument principle, the Roche theorem.	

	COMPUTATIONAL MATHEMATICS:	
	5.1 Sets and Relations4% Basic notions, set operations, extended-set operations, indexed family of sets, countable and uncountable sets, relations, cardinality, equivalence relations, congruence, partitions, partial order, representation of relations, mathematical induction.	
	5.2 Elementary Logic4% Logics of order zero and one, propositions and connectives, truth tables, conditionals and biconditionals, quantifiers, methods of proof, proofs involving quantifiers.	
5.	5.3 Numerical Analysis7% Computer arithmetic, approximations and errors; methods for the solution of nonlinear equations and their convergence: bisection method, regulafalsi method, fixed point iteration method, Newton-Raphson method, secant method; error analysis for iterative methods. Interpolation and polynomial approximation: Lagrange interpolation, Newton's divided difference, forward- difference and backward-difference formulae, Hermite interpolation, numerical differentiation, integration and their error estimates, rectangular rule, trapezoidal rule, Simpson's one-three and three-eight rules, numerical solution of systems of algebraic linear equations: Gauss- elimination method, Gauss-Jordan method; matrix inversion; LU-factorization; Doolittle's, Crount's, Cholesky's methods; Gauss-Seidel and Jacobi methods.	15%
	DIFFERENTIAL EQUATIONS:	
6.	6.1 Ordinary Differential Equations8% Formation and solution of first-order-differential equations, formation and solution of higher-order-linear-differential equations; differential equations with variable coefficients, Sturm-Liouville (S-L) system and boundary- value problems, series solution and its limitations, the Frobenius method, solution of the Bessel, the hypergeometric, the Legendre and the Hermite equations, properties of the Bessel functions.	15%
	6.2 Partial Differential Equations7% First-order-partial-differential equations, classification of	

	second-order partial-differential equations, canonical form for second-order equations; wave, heat and the Laplace equations in Cartesian, cylindrical and spherical- polar coördinates; solution of partial-differential equation by the methods of: separation of variables, the Fourier, the Laplace and the Hankeltransforms, non- homogeneous-partial-differential equations.	
7.	FUNCTIONAL ANALYSIS: 7.1 Metric Spaces	7%
8.	 GEOMETRY: 8.1 Analytical Geometry: 2% Cartesian-coördinate mesh, slope of a straight line, equation of a straight line, parallel and perpendicular lines, various forms of equation of a line, intersection of two lines, angle between two lines, distance between two points, distance between a point and a line, equation of a circle, circles formed under various conditions, intersection of lines and circles. 8.2 Conic Sections 2% Conic section (circle, parabola, ellipse and hyperbola), the general-second-degree equation. 	4%

	MATHEMATICAL STATISTICS AND PROBABILITY:	
9.	9.1 Mathematical Statistics4% Sampling theory, sampling distributions, sampling procedures, estimation of parameters, estimation of mean, variance, confidence intervals, decision theory, hypothesis testing and decision making, types of errors in tests, quality control, control charts for mean, standard deviation, variance, range, goodness of fit, chi-square test, regression analysis, method of least squares, correlation analysis.	7%
	9.2 Probability	
10.	MECHANICS: 10.1 Particle kinematics, radial and transverse components of velocity and acceleration, circular motion, motion with a uniform acceleration, the Newton laws of motion (the inertial law, the force law and the reaction law), newtonian mechanics, the newtonian model of gravitation,simple-harmonic motion, damped oscillations, conservative and dissipative systems, driven oscillations, nonlinear oscillations, calculus of variations2% 10.2 Hamilton's principle, lagrangian and hamiltonian dynamics, symmetry and conservation laws, Noether's theorem, central-force motion, two-body problem, orbit theory, Kepler's laws of motion (the law of ellipses, the law of equal areas, the harmonic law), satellite motion, geostationary and polar satellites, kinematics of two- particle collisions, motion in non-inertial reference frame, rigid-body dynamics (3-D-rigid bodies and mechanical equivalence, motion of a rigid body, inverted pendulum and stability, dyroscope)2%	4%

11.	 NUMBER THEORY: 11.1 Divisibility, euclidean algorithm, GCD and LCM of 2 integers, properties of prime numbers, fundamental theorem of arithmetic, congruence relation, residue system, Euler's phi-function, solution of system of linear congruences, congruences of higher degree2% 11.2 Chinese remainder theorem, Fermat little theorem, Wilson theorem, primitive roots and indices; integers belonging to a given exponent (mod p), primitive roots of prime and composite moduli, indices, solutions of congruences using indices, quadratic residues, composite moduli, quadratic residues of primes, the Legendre symbol, the Quadratic reciprocity law, the Jacobisymbol2% 	4%
12.	REAL ANALYSIS: 12.1 Theoretical Basis 4% Ordered sets, supremum and infimum, completeness properties of the real numbers, limits of numerical sequences, limits and continuity, properties of continuous functions on closed bounded intervals, derivatives in one variable, the mean value theorem, sequences of functions, sequences and series, power series, point-wise and uniform convergence, functions of several variables, open and closed sets and convergence of sequences in R ⁿ ; limits and continuity in several variables, properties of continuous functions on compact sets, differentiation in n-space, the Taylor series in R ⁿ , the inverse and implicit function theorems. 12.2 Integration Theory	7%

	VECTORS:	
	13.1 Vector Analysis2% 3-D vectors, summation convention, Kronecker delta, Levi-Civita symbol, vectors as quantities transforming under rotations with ϵ_{ijk} notation, scalar- and vector-	
13.	triple products, scalar- and vector-point functions, differentiation and integration of vectors, line integrals, path independence, surface integrals, volume integrals, gradient, divergence and curl with physical significance, vector identities, Green's theorem in a plane, divergence theorem, Stokes' theorem, coördinate systems and their bases, the spherical-polar- and the cylindrical-coördinate meshes.	4%
	13.2 Tensor Analysis2% Tensors of first, second and higher orders, algebra of tensors, contraction of tensor, quotient theorem, symmetric and skew-symmetric tensors, invariance property, tensors in modeling anisotropic systems, physical tensors (moment of inertia, index of refraction), diagnolization of inertia tensor as aligning coördinate frame with natural symmetries of the system.	
	Total	100%