| GATMathematics Syllabus |  |  |
| :---: | :---: | :---: |
| Sr. No. | Core Areas | Percentage |
| 1. | Algebra | 8\% |
| 2. | Basic Mathematics(Class v to vii) | 10\% |
| 3. | Calculus | 8\% |
| 4. | Complex Analysis | 7\% |
| 5. | Computational Mathematics | 15\% |
| 6. | Differential Equation | 15\% |
| 7. | Functional Analysis | 7\% |
| 8. | Geometry | 4\% |
| 9. | Mathematic al Sta tistic s \& Probability | 7\% |
| 10. | Mechanics | 4\% |
| 11. | Number Theory | 4\% |
| 12. | Real Analysis | 7\% |
| 13. | Vectors | 4\% |
|  | Total | 100\% |



|  | vectorspace, bases and dimensions of a vector space, sums and direct sums of subspaces of a finite dimensional vector space, dimension theorem, linear transformation, null space, image space of a linear transformation, matrix of a lineartransformation, rank and nullity of a linear transformation, relation between rank, nullity and dimension of domain of a linear transformation, orthogonal transformation, change of basis, inner-product spaces, projection of a vector on a nother vector, norm of a vector, Cauchy-Schwartz inequality, orthogonal and orthonormal bases, similar matrices and diagonalization of a matrix, Home(V, W), dimension and basis of Home(V, W), dual space and dual basis, a nnihilators. |  |
| :---: | :---: | :---: |
| 2. | BASIC MATHEMATICS (CLASSV TO VII): <br> 2.1 Class V \& VI Mathematics $\qquad$ <br> Sets, types of sets, whole numbers, integers, factors and multipliers, fractions, decimals, percentages, unitary method, BODMAS rule, ratio and proportion, fina ncial a rithmetic, algebraic operations, linear equations, distance, time and temperature, line segments, construction of angles, construction of triangles, construction of quadrilaterals, perimeter and area, a verage, graphs (block, column, barand pie). <br> 2.1 Class VII \& VIII Mathematics $\qquad$ 5\% <br> Basic operations on sets, Venn diagrams, verific ation of commuta tive, associa tive, distributive and De Morgan's la ws through sets and Venn diagrams, rational numbers, real numbers, number systems with bases 2 and 10 and their conversions, exponents, square root of positive numbers, cubes and cube roots, HCF and LCM (using division and prime factorization) direct and inverse relations, taxes, profit, loss, discount and markup, compound proportion, income tax, Zakat and Ushr, operations with polynomials, algebraic identities involving $(x+a)(x-a),(a+b)^{2},(a-b)^{2}$ and $a^{2}-b^{2}$, factorization of algebraic expressions, simultaneous equations, solution by compa rison, substitution, elimination, cross-multiplic ation and graphic al methods, properties of a ngles, congruent and similar figures, congruent triangles, circumference and area of a circle, surface area and volume of sphere and cylinder, frequency distribution. | 10\% |


| 3. | CALCULUS: |  |
| :---: | :---: | :---: |
|  | 3.1 Differential Calc ulus $\qquad$ 3\% Functions, inverse functions, parametric equations and polar coordinates, limit and continuity; derivative of a function, maxima, minima and point of inflection; optimization problems; mean value theorem (Taylor theorem and the infinite Taylor series), curve sketching. |  |
|  | 3.2 Integral Calculus2\% <br> Integral, definite and indefinite integral, the fundamental theorem of calculus, tec hniques of integration, area under the curve. | 8\% |
|  | 3.3 Vector Calc ulus: 3\% <br> Vectors and analytic geometry of 2 and 3 dimensional spaces, vector-valued functions and space curves, functions of several variables, limits and continuity, partial derivatives, the cha in rule, double and triple integrals with applic ations, line integrals, the Green's theorem, surface area and surface integrals, the Green, the divergence and the Stokes theorems. |  |
| 4. | 6.1 Complex Numbers $\qquad$ <br> The algebra a nd the geometry of complex numbers. <br> 6.2 Theorems $\qquad$ <br> Cauchy-Riemann equations, hamonic functions, elementary functions, complex exponents, contours and contour integrals, the Cauchy-Goursat Theorem, the Cauchy integral formulae, the Morera Theorem, maximum modulus princ iple, the Liouville theorem, fundamental theorem of algebra. <br> 6.3 Series \& Integrals $\qquad$ 3\% Convergence of sequences and series, the Taylor series, power series representation of functions, the Laurent series, uniqueness of representation, branch point, zeros of a nalytic functions, residues and poles, the residue theorem, evaluation of improper integrals involving trigonometric functions, integrals a round a branch point, the argument principle, the Roche theorem. |  |
|  |  |  |
|  |  | 7\% |
|  |  |  |


|  | COMPUIATIONALMATHEMATICS: |  |
| :---: | :---: | :---: |
| 5. | 5.1 Sets and Relations $\qquad$ 4\% <br> Basic notions, set operations, extended-set operations, indexed fa mily of sets, countable and uncountable sets, relations, ca rdina lity, equivalence relations, congruence, partitions, partial order, representation of relations, mathematical induction. |  |
|  | 5.2 Elementary Logic $\qquad$ 4\% <br> Logic s of order zero a nd one, propositions and connectives, truth tables, conditionals a nd biconditionals, qua ntifiers, methods of proof, proofs involving quantifiers. |  |
|  | 5.3 Numerical Analysis $\qquad$ <br> Computer a rithmetic, a pproximations and emors; methods for the solution of nonlinear equations and their convergence: bisection method, regulafalsi method, fixed point iteration method, Newton-Raphson method, secant method; error analysis for iterative methods. Intepolation a nd polynomial approximation: Lagrange intepolation, Newton's divided difference, forwarddifference and backward-difference fomulae, Hemite interpolation, numeric al differentiation, integration and their error estimates, rectangular rule, trapezoidal rule, Simpson'sone-three and three-eight rules, numerical solution of systems of algebraic linear equations: Gausselimination method, Gauss-J ordan method; matrix inversion; LU-factorization; Doolittle's, Crount's, Cholesky's methods; Gauss-Seidel and J a cobi methods. | 15\% |
| 6. | DIFERENIIALEQUATIONS: <br> 6.1 Ordinary Differential Equations $\qquad$ 8\% <br> Formation and solution of first-order-differential equations, formation and solution of higher-order-linear-differential equations; differential equations with va riable coefficients, Sturm-Liouville (S-L) system and boundaryvalue problems, series solution and its limitations, the Frobenius method, solution of the Bessel, the hypergeometric, the Legendre and the Hermite equations, properties of the Bessel functions. <br> 6.2 Partial Differential Equations $\qquad$ |  |
|  |  | 15\% |
|  |  |  |


|  | second-order partial-differential equations, canonical form for second-order equations; wave, heat and the Laplace equations in Cartesian, cylindric al and sphericalpolar coördinates; solution of partia l-differential equation by the methods of: separation of variables, the Fourier, the Laplace and the Hankeltransforms, non-homogeneous-partial-differential equations. |  |
| :---: | :---: | :---: |
| 7. | FUNCTIONALANALYSIS: <br> 7.1 Metric Spaces $\qquad$ 1\% <br> Completeness and convergence. <br> 7.2 Nommed Spaces $\qquad$ 2\% <br> Linearspaces, nomed spaces, Difference between a metric and a nomed space, Banach spaces, Bounded and continuous linear operators and functionals, dual spaces, finite-dimensional spaces, F. Riesz lemma. <br> 7.3 The Hahn-Banach Theorem $\qquad$ 2\% <br> The HB theorem for complex spaces, the HB theorem for normed spaces, the open mapping theorem, the closed graph theorem, uniform boundedness principle, the Banach-fixed-point theorem. <br> 7.4 Inner-Product Spaces $\qquad$ 2\% Inner-product space, Hilbert space, orthogonal and orthonomal sets, orthogonal complements, GramSc hmidt orthogonalization process, representation of functionals, Reiz-representation theorem, weak and weak* convergence. | 7\% |
| 8. | GEOMEIRY: <br> 8.1 Analytical Geometry: 2\% <br> Cartesian-coördinate mesh, slope of a stra ight line, equation of a straight line, parallel and perpendicular lines, va rious forms of equation of a line, intersection of two lines, angle between two lines, distance between two points, distance between a point and a line, equation of a circle, circlesformed undervarious conditions, intersection of lines and circles. <br> 8.2 Conic Sections $\qquad$ 2\% Conic section (circle, parabola, ellipse and hyperbola), the general-second-degree equation. | 4\% |


| 9. | MATHEMATICALSTATISICS AND PROBABIUTY: <br> 9.1 Mathematical Statistics $\qquad$ 4\% <br> Sampling theory, sa mpling distributions, sampling procedures, estimation of parameters, estimation of mean, variance, confidence intervals, decision theory, hypothesis testing and decision making, types of errors in tests, quality control, control charts for mean, standard deviation, va riance, range, goodness of fit, chi-square test, regression analysis, method of least squares, correlation a nalysis. <br> 9.2 Probability $\qquad$ 3\% Introduction to probability theory, random variables, probability distributions, mean, standard deviation, variance and expectation, binomial, negative binomial, Poisson, geometric, hypergeometric and nomal distributions, normal approximation to binomial distribution; distributions of 2 random va riables. | 7\% |
| :---: | :---: | :---: |
| 10. | MECHANICS: <br> 10.1 Partic le kinematics, radial and transverse components of veloc ity and ac celeration, circular motion, motion with a uniform acceleration, the Newton laws of motion (the inertial law, the force law and the reaction law), newtonian mechanics, the newtonian model of gravitation,simple-hamonic motion, damped oscillations, conservative and dissipative systems, driven oscillations, nonlinear oscillations, calculus of variations $\qquad$ 2\% <br> 10.2 Hamilton's princ iple, lagrangian and hamiltonian dynamics, symmetry and conservation laws, Noether's theorem, central-force motion, two-body problem, orbit theory, Kepler's laws of motion (the law of ellipses, the law of equal areas, the harmonic law), satellite motion, geostationary and polar satellites, kinematics of twoparticle collisions, motion in non-inertial reference frame, rigid-body dynamics (3-D-rigid bodies and mechanic al equivalence, motion of a rigid body, inverted pendulum and stability, gyroscope) | 4\% |


| 11. | NUMBER THEORY: <br> 11.1 Divisibility, euc lidean algorithm, GCD and LCM of 2 integers, properties of prime numbers, fundamental theorem of arithmetic, congruence relation, residue system, Euler's phi-function, solution of system of linear congruences, congruences of higher degree $\qquad$ 2\% <br> 11.2 Chinese remainder theorem, Fermat litte theorem, Wilson theorem, primitive roots and indices; integers belonging to a given exponent (mod $p$ ), primitive roots of prime and composite moduli, indices, solutions of congruences using indices, quadratic residues, composite moduli, quadratic residues of primes, the Legendre symbol, the Quadratic reciprocity law, the Jacobisymbol | 4\% |
| :---: | :---: | :---: |
| 12. | REALANALYSIS: <br> 12.1 Theoretic al Basis $\qquad$ 4\% <br> Ordered sets, supremum and infimum, completeness properties of the real numbers, limits of numeric al sequences, limits and continuity, properties of continuous functions on closed bounded intervals, derivatives in one variable, the mean value theorem, sequences of functions, sequences and series, power series, point-wise and uniform convergence, functions of several variables, open and closed sets and convergence of sequences in $\mathrm{R}^{n}$; limits and continuity in several variables, properties of continuous functions on compact sets, differentiation in $n$-space, the Taylor series in $\mathrm{R}^{\mathrm{n}}$, the inverse and implic it function theorems. <br> 12.2 Integration Theory $\qquad$ 3\% <br> Series of numbers and their convergence, series of functions and their convergence, Dabroux upper and lower sums and integrals, Dabrouxintegrability, Riemann sums and Riemann integrals, Riemann integration in $\mathrm{R}^{2}$, change of order of variables of integration, Riemann integration in $\mathrm{R}^{3}$, and $\mathrm{R}^{n}$, Riemann-Steiltjes integration, functions of bounded variation, the length of a curve in $\mathrm{R}^{\mathrm{n}}$ | 7\% |



